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Abstract: The paper aims at describing the motivation 
and the outcome of the definition of a reference 
architecture for software on-board the spacecraft 
platforms. It is based on the work of an industrial 
working group named Savoir-Faire, supported by 
industrial activities, which have defined the 
architectural principles and the process to define 
further the architecture. The architecture is using a 
component based approach executed by an execution 
platform adapted to space. The paper will present the 
user needs, the architecture requirements, the 
architectural principles, and the way forward. 
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1. INTRODUCTION 

1.1 Background 

Space industry has recognized already for quite some 
time the need to raise the level of standardisation in the 
avionics system in order to increase efficiency and 
reduce cost and schedule in the development. As an 
example, Eurospace made the recommendations, at the 
end of 2006, in the frame of the European 
Harmonisation process, to develop modular avionics 
architectures and to standardize interface in order to 
define building blocks (BBs). This was confirmed by a 
Panel Session on Avionics Reference Architectures 
(ARA) took place on 4th October 2007 in the frame of 
ESA’s workshop on Avionics Data, Control and 
Software Systems (ADCSS ‘07). 

The implementation of such a vision is expected to 
provide benefits for all the stake-holders in the space 
community: 

− Customer Agencies: reduction of the project 
development lifecycle and reduced technical risk for 
software development and operations; 

− System Integrators: increased competitiveness in the 
world market through lower price and shorter time-to 
market; multi-supplier option; 

− Supplier industry: diversified customer basis; 
supplied building-blocks compatible with prime 
architectures across the board. 

Furthermore, the adoption of standards is a known 
facilitator to focused and global innovation. 

Space can benefit from the example set by other 
industrial sectors where similar initiatives have been 

successfully conducted for some time already, e.g. 
AUTOSAR for the automotive industry.  Although it 
might be argued that the business model is different in 
the automotive and space sectors, AUTOSAR 
demonstrates that the need for standardisation is born 
from the drive of industry to become more competitive, 
irrespectively of the sector. 

There are a number of ongoing initiatives towards this 
vision, both on the side of industry and in the frame of 
ESA’s R&D programmes. Space primes and on-board 
software companies have made significant progress 
and have implemented and/or are implementing reuse 
on the basis of company internal reference 
architectures and building blocks. However, in order 
for this standardisation to provide the maximum 
benefits, it has to be tackled (at least) at European level 
rather than at company level. 

ESA has recently achieved parallel activities aimed at 
preparing the grounds for improving the onboard 
software reuse in a systematic manner (COrDeT and 
Domeng; see acknowledgement). The studies 
confirmed that interface standardization allows to 
efficiently composing the software on the basis of 
existing and mature building blocks. Much attention is 
being devoted today to this standardization, but the 
pace needs to be increased in the development, 
validation and adoption of the standards. 

 

1.2 Towards reference architectures: Savoir and 
Savoir-Faire 

The success of this strategy relies on harmonisation 
actions (within space industry) to define and agree on 
the new generic architectures, interface, building 
blocks and process. Reference architectures must be 
defined jointly with industry and the results must be 
shared in order to be beneficial to all spacecraft 
developments, since it is demonstrated by concrete 
industrial experience that there are significant 
commonalities between avionics systems across 
spacecraft service domains (Science, Earth 
Observation, Telecommunication and Navigation). 

In April 2008 an initiative between European Space 
Agencies and Space industry at prime and supplier 
level was started with the objective to take stock of the 
ongoing initiatives in both agencies and industry 
towards the vision of an avionics development that 
maximises reuse and standardisation, to identify the 
gaps and to help concentrate all the efforts from 
industry, national agencies and ESA towards the shared 



  

objectives. To this effect it was seen as convenient to 
refer to all ongoing initiatives, related to this vision by 
the name “Space Avionics Open Interface 
Architecture”, in order to focus the attention on the 
overall goals and to facilitate the synergy between such 
initiatives.  

To enable progress on the objectives of SAVOIR it was 
needed and required to set-up a platform where 
technical discussions can take place and where key 
recommendations (e.g. what standards to develop) can 
be made by the stake holders. To this end, an Advisory 
Group was established to steer the work plan of the 
technical discussions, referred to as SAVOIR Advisory 
Group. 

The SAVOIR Advisory Group decided to spawn a 
specific subgroup on on-board software reference 
architectures called “SAVOIR Fair1 Architecture and 
Interface Reference Elaboration working group. This 
subgroup has to achieve the definition of software 
reference architectures, based on open interface 
standards, for the purpose of specifying building blocks 
that can be developed, qualified and composed into 
compliant avionics software systems with a minimum 
of re-engineering effort, providing a maximum of 
reliability and performance and simple to use and to 
implement. It acts as design authority for current R&D 
activities, provides recommendations to future R&D 
activities and provides the SAVOIR Advisory Group 
with a synthesis of the results. 

The paper gives an update on the current status of the 
working group activities and related R&D activities 
[5]. 

2. WHY REFERENCE ARCHITECTURE? 

2.1 Motivation 

The space projects schedules are always decreasing. 
Teams need to increase efficiency and cost-
effectiveness in the development process of onboard 
avionics. But there is a trend towards more 
functionality implemented by the onboard software and 
more complexity for the overall space mission. 
Therefore, the overall objective of space industry is 
now to standardise the avionics systems for space 
programmes, and therefore the on-board software. 

The proposed way to achieve this objective is by 
adopting a building block approach, i.e. an approach 
that permits to implement the on-board software from a 
set of pre-developed and fully compatible building 

                                                           
1 The architecture must be fair in being impartial for all 
the stakeholders, even-handed for the interface 
definition, reasonable technically, non discriminatory 
for technologies and adequate to the purpose. 
 

blocks, plus specific adaptations and "missionisation" 
according to specific mission requirements. The target 
missions are the core ESA missions, i.e. high reliability 
& availability spacecraft driven systems (e.g. 
operational missions, science missions). 

The next issue is to be able to develop the “right” 
building blocks, which can be produced and delivered 
by suppliers to any system integrator. To achieve this, 
reference architectures must be defined. 

For software, the key to a generic/reusable architecture 
is to separate the application aspects from the general-
purpose data processing aspects. The lower level layers 
of the architecture should handle the computer issues 
(implementation of communication, real time, 
dependability). The higher level layers should deal 
only with application aspects. However, the application 
building blocks (ABB) should be fully characterized 
with their needs in terms of communication, real-time, 
dependability and should rely on the platform building 
blocks (PBB) for the complete implementation. 
Automatic configuration of PBB from ABB attributes 
is a target. 

The reference architectures are then used as a basis to 
develop standards for interface specifications. This 
enables the development by industry of building 
blocks, allowing the implementation of the therefore 
famous AUTOSAR concept: “Cooperate on standards, 
compete on implementation”. 

 

2.2 Faster, Later, Softer 

The OBSW life cycle must be organised in consistency 
with the system life cycle that features the definition of 
functional increments. It must in particular: 

 allow for a faster software development in the 
context of a reduced schedule, i.e. the ability to 
release in a short time a new version of the OBSW 
product and ultimately the complete and validated 
product, 

 be compatible to a late definition or changes of 
some of its requirements, e.g. typically for mission 
specificities like the system FDIR, system mission 
management or adaptation to hardware 
specificities or hardware changes, 

 cope with the various system integration strategies, 
i.e. be flexible enough e.g. to allow for early 
release to integration or cope with late central data 
management unit  availability. 
 

From the above given programmatic stakes, the slogan 
“Faster, Later, Softer” has been derived in the 
COrDeT studies and represents a summary of three 
stakes for the on-board software life cycle. Those 
stakes are included and defined as user needs. 

 



  

2.3 User needs 

In order to guide the work some user needs have been 
collected: 

Shorter software development time: Future projects 
will require faster software development in the context 
of a shorter schedule. The overall schedule is reduced 
because: (i) the definition of software requirements is 
finalized later; (ii) the final version of the software is 
expected to be released earlier. The cost of the SW 
itself is a minor fraction of the cost of the whole 
system, but the impact of delays in availability of the 
SW may have big impact on the overall schedule and 
consequently also on cost of the project. 
 

timeSW-SRR SW 
requirements

definition
SWRR / SW-PDR

SW V0 for
AIT

SW release

schedule for SW development

 

Figure 1: Software schedule issue 

Reduce recurring costs: Identification and reduction of 
recurring costs arguably helps to either deliver project 
resources to focus on the value added of the product 
(the functional contents) or to reduce the cost of 
development while providing the same set of functions. 
Recurring costs in this context are meant to be those 
parts of the software which do not directly provide an 
added value and are not mission specific, e.g. device 
drivers, real-time operating system, providing 
communication services, archetypal parts in the 
application software, etc.  

Quality of the product: The level of quality of the 
software must be at least the same as the one of OBSW 
developed with current approaches (timing 
predictability, dependability, etc...). 

Increase cost-efficiency: Cost-efficiency relates in this 
context to the “value” of the software product that is 
developed with a certain amount of budget. An 
increased cost-efficiency is achieved by: i) developing 
the same set of functions for less budget; ii) developing 
the same set of functions with more stringent 
requirements (for example, more performing and 
robust control laws) for the same budget; iii) increasing 
the number of realized functions for the same budget. 

New development approaches may be required to fulfil 
this user need. The budget available for software 
development is not expected to grow and it may instead 
be subject to reduction. On the contrary, the 
performance of core functionalities is expected to grow 

(e.g. accuracy of the AOCS controls) and new complex 
functionalities are expected to be developed (i.e. 
formation flying, advanced autonomy, etc...) 

Reduce Verification and Validation effort: The cost of 
V&V activities in the space domain is the main 
contributor to the cost of software development and 
may range between 50% to 70% of the overall cost; it 
is also one of the most time-consuming activities. New 
development approaches shall foster the reduction of 
effort for Verification and Validation. This result is 
achieved with the adoption of a rigorous design 
methodology and a suitable overall process. A possible 
strategy consists in the adoption of a design process 
inspired to the principle of Correctness by 
Construction (C-by-C), analysis at early design stage 
and provisions for reusability of (functional) tests are 
the key ingredients to the attainment of the expected 
reduction of effort; a reduced effort for V&V activities 
concurs to attaining a shorter development time and 
reduced cost.  

Mitigate the impact of late requirement definition or 
change: The definition of new requirements or their 
change may occur during the whole SW lifecycle. The 
causes of those situations are typically traced to late 
refinement of system design, evolution of the 
operational level, to mission-specific concerns like a 
late finalization of the system FDIR or of the mission 
management, or to software modification required to 
compensate for HW problems found during system 
integration.  

Support for various system integration strategies: 
Preliminary software releases are important to allow 
early system integration. Software development as well 
may be managed with different strategies. The new 
approach is required to facilitate those different 
strategies and ease the final integration of the 
increments or elements.  

Simplification and harmonization of FDIR: For future 
missions, a simplification and hopefully harmonization 
of the Fault Detection, Isolation and Recovery (FDIR) 
approach is advocated. This need has to be attacked 
both at system and software level. For the former, 
system engineers have to rationalize the definition of 
the FDIR strategy. For the latter, a simplification and 
rationalization of the software provisions for FDIR is 
advocated.  A valuable strategy would consist in 
providing a set of functionalities and design patterns 
that cover the essential mechanisms for the software 
realization of a FDIR strategy. 

Optimize flight maintenance: Flight maintenance may 
be required to change the OBSW. Facilitation of the 
required operations, as well as a harmonization of the 
strategy to perform it will decrease the time and cost of 
maintenance. It would be desirable to also minimise the 
risk of in-flight maintenance by updating parts of the 



  

software (possibly an entire component) without 
having to reboot the CDMU. 

Industrial policy support: In general, the development 
process should enable multi-team software 
development. Industrial policy is very specific to the 
ESA environment. It requires some flexibility in the 
allocation of software elements to industry, according 
to criteria such as prime/non-prime, or geographical 
return. Multi-team software development facilitates the 
subcontracting to non-prime while keeping integration 
controllable, and facilitates the application of the 
geographical return policy. 

Role of software suppliers: A new harmonized 
approach to software development should promote the 
increase of competence of supplier. The approach 
inherently foster supplier competition: different 
suppliers may develop the same component and 
compete on quality, extension features, performance, 
cost and, to a lesser extent, schedule. Interestingly, for 
what concerns suppliers, the approach will enable to 
provide software to every software prime, without the 
need to adapt all the software to the specific 
development policies of each single prime.  

Dissemination activities: The benefits that are earned 
with the adoption of an agreed development approach 
may be increased with the collaboration of system 
engineers. The definition of future systems (by system 
engineers) can be improved by exposing them to the 
core principles of the approach. If they specify out of 
the domain of reuse, the cost will certainly increase. 

Future needs: Several needs can be foreseen for future 
missions. In particular the growing software 
complexity is one of the origins of those needs. These 
needs should be taken into account and should be 
evaluated on their impact on the software reference 
architecture. Examples of future needs are the 
integration of functions of different criticality level, of 
different security level, use of Time and Space 
Partitioning (TSP), support to the multi-core 
processors, contextual verification of safety properties. 

 

2.4 High level requirements 

The user needs have been then translated into a set of 
high level requirements, in particular about software 
reuse, separation of concerns, reuse of V&V tests, 
HW/SW independence, component-based approach, 
software observability, software analyzability, property 
preservation, integration of software building blocks, 
support for variability factors, late incorporation of 
modification in the software, provisions of mechanisms 
for FDIR, and software update at run time. 

The requirements have been prioritized in order to 
guide the planning of the work. They have been traced 
to the user needs. 

 

2.5 The software reference architecture 

The software reference architecture is made of two 
main parts: 

 An software architectural concept addressing the 
pure software architectural related issues, 

 The functional aspects represented by a set of 
building blocks and the corresponding interface 
definitions, expressing the functions derived from 
the analysis of the functional chains of the core on-
board software domain. 

 

 
Reference 
architecture 

= 
Software 
architectural 
concepts 

+ 
Building 
blocks & 
Interfaces 

3. THE SOFTWARE ARCHITECTURAL 
CONCEPT 

3.1 Component model 

The software architectural concept is based on a 
component based software engineering (CBSE) 
approach [1]. The approach defines a component model 
that features three software entities, the component 
(which is the design entity), the container and the 
connector (two entities used in the implementation 
which do not appear explicitly in the design space). 
The approach permits the creation of software as a set 
of interconnected components. The set of components 
represents the functional architecture of the software. 
An underlying execution platform provides services to 
components, containers and connectors. Finally, all the 
software is deployed on a physical architecture 
(computational units, equipments, and network 
interconnections between them). 

 

Components, 
Containers, Connectors

Physical architecture

Component
A

Component
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Container AContainer A

Component
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Component
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Figure 2: Software architectural concept 

The success of a development methodology aimed to 
software reuse in the space domain (considering the 
specific constraints of embedded systems) lies on: (i) 
the adoption of a rigorous separation of concerns in 
particular between the functional and non-functional 
dimensions; (ii) the verification of properties of 
components and of component assemblies. 



  

Separation of concerns is enforced in a CBSE by a 
clear and careful allocation of concerns to the three 
distinct software entities of the approach (the 
component, the container and the connector). 
Additionally the design space should be equipped with 
a multiple view that enforce separation of concerns and 
permit to the various design actors to concentrate only 
on their concern of pertinence. 

Components are decorated with various properties. The 
second key factor of CBSE is the verification of 
properties, in particular (a) composability, which is 
ensured when a property stipulated on individual 
components hold upon component composition; and 
(b) compositionality, which is the ability to determine a 
property of a component assembly or in general of the 
whole software by the only use of properties of their 
individual components. 

The component model defines formally all those 
functional concepts as well as the rules governing their 
usage. It may be noticed that ASSERT 
(http://www.assert-project.net/), even if focusing on 
other aspects, features a kind of component model. 

 

3.2 Computational model 

Likewise, the computational model defines formally 
computational entities as well as the rules governing 
their usage. Using a computational model is required 
by the Space software engineering standard (ECSS-E-
ST-40C). A dynamic software architecture is described 
according to an analysable computational model, i.e. 
from the description a schedulability analysis can be 
conducted. 

 

3.3 Execution platform 

The execution platform is the part of the software 
architecture providing all necessary means for the 
implementation of a component and computational 
model. The services can be subdivided into four 
different parts: (i) services for containers (to enforce or 
monitor non-functional properties), (ii) services for 
connectors (e.g. for the implementation of 
communication means), (iii) services for components 
(typically technical services like access to the on-board 
time, or storage services) and (iv) services to 
implement so-called “abstract components” (e.g. PUS 
monitoring, OBCPs, HW representation). 

Note: Reference architecture and Time and Space 
Partitioning (TSP). 

The notion of reference architecture includes (i) a 
computational model and (ii) a conformant execution 
platform that provides services for containers, in 
particular scheduling services. It is therefore possible 
to select Time and Space Partitioning as a scheduling 

service, with a cyclic or time triggered computational 
model. 

This choice only impacts on the services for 
connectors, as the communication services must also 
include an inter partition communication channel. 

4. THE FUNCTIONAL ASPECTS 

4.1 Introduction 

The building blocks and interfaces, which are the 
functional aspects of the reference architecture, are the 
result of the mapping of functional chains of the 
spacecraft onto the software architectural concept, 
through the allocation of functions to components or 
execution platform services. 
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4.2 Functional chains 

Functional chains are a consistent and well enclosed set 
of functions that are needed to use and operate the 
spacecraft and typically consist of a set of hardware 
and software that together perform an end-to-end 
system level function. Functional chains should be 
integrated and validated (as far as possible) in 
separation. 

An example for a functional chain is the thermal 
control which uses the following entities: thermistors 
(sensors), I/O interface, control algorithm, heaters 
(actuators), Telecomand reception, Telemetry delivery. 
Other functional chains are the AOCS; Data 
management and control (TM/TC); Mission 
Management, Payload management, etc. 
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Figure 3: Example of functional chains 

4.3 Domain engineering 

The reference architecture is made to be reusable. The 
architectural concept gives the mechanisms to 
implement reuse. However, the functional aspects must 



  

also be reusable. To achieve this goal, the domain of 
reuse of the functional chains must be defined. This is 
usually done using the concept of domain engineering. 
This process consists of two main steps: 

 Domain analysis that identifies the scope of the 
domain (the functional chains to be covered), its 
commonalities and its variability factors. 

 Domain design that maps the functions identified 
in the previous steps on to the software 
architectural concept by allocation of functions to 
components or execution platform services.  

 

4.4 Variability factors 

For the development of a reference architecture and the 
identification of the elements which can be re-used in 
the frame of this architecture, an analysis of the 
commonalities and variability factors within the 
domain is essential. The domain analysis gathers all 
this information synthesized in the so-called feature 
model. Various aspects of the domain can be taken into 
account, e.g. functional chains (top-down approach), 
physical world (bottom-up approach), past, current and 
future architectures (software as well as hardware), 
experiences from other domains (e.g. automotive).  

The COrDeT study identified six variability factors: 
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Figure 4: Variability factors 

The variability factors are dependent on each others but 
solely in one direction (from mission to processor 
module). Indeed the assets implementing the mission 
variability will rely on assets implementing the system 
operational concept, avionics, network and processor 
module variability factors.  

Setting the variability within the domain of reuse 
obviously impair the definition of any system out of the 
domain of reuse. It must be understood that a proper 
definition of the domain is essential, as it will trade the 
freedom of specification of system engineers, for the 
efficiency of the system implementation. The definition 
of the functional chains for the reference architecture 
needs therefore strong support of system, operation, 
avionics and control experts. 

The mapping of the functional chains on the software 
architectural concept allocates functions to components 

and execution platform services. It must be noted that 
those components or execution platform services must 
not cross the boundaries of the identified variability 
factors in order to improve re-use. The result is 
subsequently expressed as a set of building blocks 
(either application components or execution platform 
elements) and their interfaces. 

 

4.5 Interfaces and their definition 

General and reusable interfaces must be carefully 
designed and group a limited number of operations 
which have a strong functional cohesion, according to 
the Interface Segregation Principle: 

“Building blocks shall not be forced to depend on 
operations that they do not use.” 

This principle deals with the disadvantages of defining 
large interfaces. Large interfaces are not cohesive. 
Cohesion is a measure of how strongly related and 
focused the responsibilities are.  In other words the 
interfaces of building blocks should be broken into fine 
grained groups of functions that have highly related 
responsibilities for specific clients or service. This is 
also in relation with the cohesion of building blocks, 
which must be highly cohesive. A building block with 
highly related responsibilities that does a little amount 
of work is considered highly cohesive. 

5. THE REFERENCE ON-BOARD SOFTWARE 
ARCHITECTURE FOR SPACECRAFT 

A mapping of the functional chains onto the elements 
of the software architectural concepts results in the 
identification of building blocks as follows: 
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Figure 5: The current status of the software reference 
architecture 



  

6. OPEN POINTS AND WAY FORWARD 

6.1 Hierarchical components 

The adoption of hierarchical decomposition of 
components can be an effective means to master the 
complexity of software design as opposed to attaining 
containment relationships between components. A 
component could be decomposed to include a set of 
child components with delegation and subsumption 
relationships between the interfaces of the parent 
component and those of the child components. 

However, in contrast to other approaches, the various 
non-functional dimensions applicable to the space 
domain complicate the picture. 

The solution currently preferred is a form of “grey 
box” containment, in which the parent component 
reveals only information that is necessary to perform 
the required forms of analysis (schedulability analysis, 
stack analysis, etc..) 

The solution to this problem shall in fact preserve the 
verification of composable and compositional  
properties, which is one of the foremost requirements 
placed on the component model and a cornerstone of 
the advocated approach. 

 

6.2 Error management 

The Fault Detection, Isolation and Recovery (FDIR) is 
a major function of the spacecraft platform system and 
software. It has a high complexity because it links 
together hardware behaviour, hardware failure, 
hardware reconfiguration, software, software 
monitoring, software reconfiguration actions such as 
mode changes, and last but not least, time, response 
time and latencies. Getting it to work is a difficult task. 
Its complexity could be reduced through a proper 
architectural design with separation of concerns. But 
this is a task that goes above the software architects, 
and must be tackled as well by various kinds of system 
engineers (avionics, control, dependability, etc). 

It is considered up to now that FDIR can be subject to a 
reference architecture, where the software implements 
elementary actions which are highly parameterized and 
data driven. The setting of the parameters at system 
level allows configuring the FDIR, while keeping the 
software architecture relatively compliant to the 
separation of concerns goal. 

 

6.3 Application or execution platform? 

Mapping some functions on the architecture sometimes 
results in the multiplication of the same software 
mechanism into the application software. As a matter 
of optimization, it is sometimes useful to optimize the 
architecture by moving this common mechanism into 

the execution platform, although it belongs by nature to 
the application. 

One example is the monitoring of the house keeping 
parameters, which allows determining the health status 
of the spacecraft. This monitoring is performed by all 
the functional chains on their own parameters. 
Duplicating this function as the same component in all 
the application building blocks would be heavy. 
Instead, it becomes an “abstract component”. The 
monitoring common mechanism can be moved into the 
execution platform, as a “service for abstract 
components”. 

A more difficult case concerns the components that 
should have access to nearly all the existing provided 
interface. This would increase the complexity the 
architecture a lot and goes against the separation of 
concerns. An example is the so called OBCP (On 
Board Control Procedure), a sort of script which is 
send to the spacecraft during operation, interpreted on 
board, and which can activate many software 
resources. There is today no satisfactory solution for 
this sort of component. 

 

6.4 Towards a new validation process? 

Verification and validation activities are a major cost 
and schedule driver for on-board SW development, so 
a reference architecture aiming at reuse must take them 
into account. 

The current software architecture mixes functional and 
non functional aspects. Therefore the preservation of 
assumptions can not be demonstrated.  

Demonstrating the preservation of the assumption is 
much more difficult than rerunning all the tests (TSP or 
not). A new reference architecture that separates 
functions (e.g. a component model), that support the 
formalization of the assumptions and their verification 
in the implementation, should inverse the trade-off, and 
should allow a maximum reuse of the tests. For 
example, configuration parameters of the building 
blocks must also to configure the test suite. The 
specification of a building block should include 
requirements on the reuse of its test suite.  

As a consequence, the traditional validation tests 
should be split into sub-steps, some of them being 
reusable as is. 

 

6.5 Method and tools 

The software architectural concept defined to realize 
the reference architecture strongly relies on the 
adoption of domain specific languages, methods and 
supporting tools.  

Product lines engineering, model driven engineering 
and component orientation require specific modelling 



  

languages, automation or semi-automation of many 
steps and generation capabilities in support of property 
preservation, separation of concerns and variability.  

In addition mapping of functional chains and 
variability factors to the software architectural concept 
are system level concerns that need to be further 
developed in the methodological frame  

The overall approach requires a high degree of control 
over support tools to be adopted in order to obtain 
proper customizations and maintainability over time.  

Control of tools can be obtained either through a 
collaboration among the space community and 
commercial tool vendors or through the adoption of 
open source tools. 

However the today’s limited number of commercial 
model driven tool vendors (nearly a monopoly), 
considering also the high number of tools that have 
been discontinued recently, the high costs to develop 
and maintain domain specific tools and the small 
dimension of the space market are all driving factors 
the shall be considered in the space community and 
lead to the adoption and to the investment on open 
source tools. 

7. CONCLUSION 

The elaboration of a reference on-board software 
architecture is ambitious. Key elements are essential to 
the success of the approach: 
 an appropriate domain engineering to define the 

perimeter of reuse of the software 
 identification of the variability factors within that 

domain 
 separation of concerns, between functional and 

non functional, between application and execution 
platform 

 adaptation of the engineering process, in particular 
for Validation, and elaboration of a clear reuse 
process allowing the identification of a minimum 
delta-validation. 

The success of the approach will be measured by the 
level of reuse of the components. The operating system 
RTEMS is currently the first eligible space software 
building block. The expectation is that the space 
software industry is able to transfer its development 
effort from non sophisticated repetitive developments 
such as data handling, basic communication, control, 
thermal and power frameworks, towards sophisticated, 
value added, expert functionalities such as advance 
control laws, autonomy, intelligent fault detection 
isolation and recovery, on-board sensor fusion, which 
are essential for future missions such as global earth 
observation, deep space science or exploration. 
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ESA has recently achieved parallel activities [2], [3], 
[4], aimed at preparing the grounds for improving the 
onboard software reuse in a systematic manner:  

− Component Oriented Development Techniques 
(COrDeT) – two parallel TRP activities each lead by 
one prime (Astrium and Thales Alenia Space) 

− Domain Engineering (Domeng) – GSTP activity lead 
by GMV. 

These contracts involve relevant stakeholders in the 
prime and software supplier sectors: Astrium Toulouse, 
Thales-Alenia Space Cannes, SciSys, GMV, Intecs, as 
well as academia and SMEs: the University of Padua, 
P&P Software and SoftWcare. The objectives of these 
projects were to: 

− Define the knowledge domain relevant to spacecraft 
(satellites and space exploration systems) 

− Define generic architectures (design models) for the 
future implementation of the components (building 
blocks) 

− Propose a BB and interface standardisation scheme 

− Identify suitable technologies to support the domain 
engineering. 
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