

SPACE ON-BOARD SOFTWARE REFERENCE ARCHITECTURE

SAVOIR-FAIRE working group (Jean-Loup Terraillon (ESA), Andreas Jung (ESA), Paul Arberet (CNES), Sergio
Montenegro (DLR), Alain Rossignol (Astrium), Gérald Garcia (TAS), Jianning Li (SSC), Ana Isabel Rodriguez (GMV),

Silvia Mazzini (Intecs), Poul Hougaard (Terma), Stuart Fowell (SciSys), Massimo Ferraguto (SSF)) and Marco
Panunzio (University of Padua)

Abstract: The paper aims at describing the motivation
and the outcome of the definition of a reference
architecture for software on-board the spacecraft
platforms. It is based on the work of an industrial
working group named Savoir-Faire, supported by
industrial activities, which have defined the
architectural principles and the process to define
further the architecture. The architecture is using a
component based approach executed by an execution
platform adapted to space. The paper will present the
user needs, the architecture requirements, the
architectural principles, and the way forward.

Keywords: COrDeT, Savoir-Faire, architecture, space
on-board software, component

1. INTRODUCTION

1.1 Background

Space industry has recognized already for quite some
time the need to raise the level of standardisation in the
avionics system in order to increase efficiency and
reduce cost and schedule in the development. As an
example, Eurospace made the recommendations, at the
end of 2006, in the frame of the European
Harmonisation process, to develop modular avionics
architectures and to standardize interface in order to
define building blocks (BBs). This was confirmed by a
Panel Session on Avionics Reference Architectures
(ARA) took place on 4th October 2007 in the frame of
ESA’s workshop on Avionics Data, Control and
Software Systems (ADCSS ‘07).

The implementation of such a vision is expected to
provide benefits for all the stake-holders in the space
community:

− Customer Agencies: reduction of the project
development lifecycle and reduced technical risk for
software development and operations;

− System Integrators: increased competitiveness in the
world market through lower price and shorter time-to
market; multi-supplier option;

− Supplier industry: diversified customer basis;
supplied building-blocks compatible with prime
architectures across the board.

Furthermore, the adoption of standards is a known
facilitator to focused and global innovation.

Space can benefit from the example set by other
industrial sectors where similar initiatives have been

successfully conducted for some time already, e.g.
AUTOSAR for the automotive industry. Although it
might be argued that the business model is different in
the automotive and space sectors, AUTOSAR
demonstrates that the need for standardisation is born
from the drive of industry to become more competitive,
irrespectively of the sector.

There are a number of ongoing initiatives towards this
vision, both on the side of industry and in the frame of
ESA’s R&D programmes. Space primes and on-board
software companies have made significant progress
and have implemented and/or are implementing reuse
on the basis of company internal reference
architectures and building blocks. However, in order
for this standardisation to provide the maximum
benefits, it has to be tackled (at least) at European level
rather than at company level.

ESA has recently achieved parallel activities aimed at
preparing the grounds for improving the onboard
software reuse in a systematic manner (COrDeT and
Domeng; see acknowledgement). The studies
confirmed that interface standardization allows to
efficiently composing the software on the basis of
existing and mature building blocks. Much attention is
being devoted today to this standardization, but the
pace needs to be increased in the development,
validation and adoption of the standards.

1.2 Towards reference architectures: Savoir and
Savoir-Faire

The success of this strategy relies on harmonisation
actions (within space industry) to define and agree on
the new generic architectures, interface, building
blocks and process. Reference architectures must be
defined jointly with industry and the results must be
shared in order to be beneficial to all spacecraft
developments, since it is demonstrated by concrete
industrial experience that there are significant
commonalities between avionics systems across
spacecraft service domains (Science, Earth
Observation, Telecommunication and Navigation).

In April 2008 an initiative between European Space
Agencies and Space industry at prime and supplier
level was started with the objective to take stock of the
ongoing initiatives in both agencies and industry
towards the vision of an avionics development that
maximises reuse and standardisation, to identify the
gaps and to help concentrate all the efforts from
industry, national agencies and ESA towards the shared

objectives. To this effect it was seen as convenient to
refer to all ongoing initiatives, related to this vision by
the name “Space Avionics Open Interface
Architecture”, in order to focus the attention on the
overall goals and to facilitate the synergy between such
initiatives.

To enable progress on the objectives of SAVOIR it was
needed and required to set-up a platform where
technical discussions can take place and where key
recommendations (e.g. what standards to develop) can
be made by the stake holders. To this end, an Advisory
Group was established to steer the work plan of the
technical discussions, referred to as SAVOIR Advisory
Group.

The SAVOIR Advisory Group decided to spawn a
specific subgroup on on-board software reference
architectures called “SAVOIR Fair1 Architecture and
Interface Reference Elaboration working group. This
subgroup has to achieve the definition of software
reference architectures, based on open interface
standards, for the purpose of specifying building blocks
that can be developed, qualified and composed into
compliant avionics software systems with a minimum
of re-engineering effort, providing a maximum of
reliability and performance and simple to use and to
implement. It acts as design authority for current R&D
activities, provides recommendations to future R&D
activities and provides the SAVOIR Advisory Group
with a synthesis of the results.

The paper gives an update on the current status of the
working group activities and related R&D activities
[5].

2. WHY REFERENCE ARCHITECTURE?

2.1 Motivation

The space projects schedules are always decreasing.
Teams need to increase efficiency and cost-
effectiveness in the development process of onboard
avionics. But there is a trend towards more
functionality implemented by the onboard software and
more complexity for the overall space mission.
Therefore, the overall objective of space industry is
now to standardise the avionics systems for space
programmes, and therefore the on-board software.

The proposed way to achieve this objective is by
adopting a building block approach, i.e. an approach
that permits to implement the on-board software from a
set of pre-developed and fully compatible building

1 The architecture must be fair in being impartial for all
the stakeholders, even-handed for the interface
definition, reasonable technically, non discriminatory
for technologies and adequate to the purpose.

blocks, plus specific adaptations and "missionisation"
according to specific mission requirements. The target
missions are the core ESA missions, i.e. high reliability
& availability spacecraft driven systems (e.g.
operational missions, science missions).

The next issue is to be able to develop the “right”
building blocks, which can be produced and delivered
by suppliers to any system integrator. To achieve this,
reference architectures must be defined.

For software, the key to a generic/reusable architecture
is to separate the application aspects from the general-
purpose data processing aspects. The lower level layers
of the architecture should handle the computer issues
(implementation of communication, real time,
dependability). The higher level layers should deal
only with application aspects. However, the application
building blocks (ABB) should be fully characterized
with their needs in terms of communication, real-time,
dependability and should rely on the platform building
blocks (PBB) for the complete implementation.
Automatic configuration of PBB from ABB attributes
is a target.

The reference architectures are then used as a basis to
develop standards for interface specifications. This
enables the development by industry of building
blocks, allowing the implementation of the therefore
famous AUTOSAR concept: “Cooperate on standards,
compete on implementation”.

2.2 Faster, Later, Softer

The OBSW life cycle must be organised in consistency
with the system life cycle that features the definition of
functional increments. It must in particular:

 allow for a faster software development in the
context of a reduced schedule, i.e. the ability to
release in a short time a new version of the OBSW
product and ultimately the complete and validated
product,

 be compatible to a late definition or changes of
some of its requirements, e.g. typically for mission
specificities like the system FDIR, system mission
management or adaptation to hardware
specificities or hardware changes,

 cope with the various system integration strategies,
i.e. be flexible enough e.g. to allow for early
release to integration or cope with late central data
management unit availability.

From the above given programmatic stakes, the slogan
“Faster, Later, Softer” has been derived in the
COrDeT studies and represents a summary of three
stakes for the on-board software life cycle. Those
stakes are included and defined as user needs.

2.3 User needs

In order to guide the work some user needs have been
collected:

Shorter software development time: Future projects
will require faster software development in the context
of a shorter schedule. The overall schedule is reduced
because: (i) the definition of software requirements is
finalized later; (ii) the final version of the software is
expected to be released earlier. The cost of the SW
itself is a minor fraction of the cost of the whole
system, but the impact of delays in availability of the
SW may have big impact on the overall schedule and
consequently also on cost of the project.

timeSW-SRR SW
requirements

definition
SWRR / SW-PDR

SW V0 for
AIT

SW release

schedule for SW development

Figure 1: Software schedule issue

Reduce recurring costs: Identification and reduction of
recurring costs arguably helps to either deliver project
resources to focus on the value added of the product
(the functional contents) or to reduce the cost of
development while providing the same set of functions.
Recurring costs in this context are meant to be those
parts of the software which do not directly provide an
added value and are not mission specific, e.g. device
drivers, real-time operating system, providing
communication services, archetypal parts in the
application software, etc.

Quality of the product: The level of quality of the
software must be at least the same as the one of OBSW
developed with current approaches (timing
predictability, dependability, etc...).

Increase cost-efficiency: Cost-efficiency relates in this
context to the “value” of the software product that is
developed with a certain amount of budget. An
increased cost-efficiency is achieved by: i) developing
the same set of functions for less budget; ii) developing
the same set of functions with more stringent
requirements (for example, more performing and
robust control laws) for the same budget; iii) increasing
the number of realized functions for the same budget.

New development approaches may be required to fulfil
this user need. The budget available for software
development is not expected to grow and it may instead
be subject to reduction. On the contrary, the
performance of core functionalities is expected to grow

(e.g. accuracy of the AOCS controls) and new complex
functionalities are expected to be developed (i.e.
formation flying, advanced autonomy, etc...)

Reduce Verification and Validation effort: The cost of
V&V activities in the space domain is the main
contributor to the cost of software development and
may range between 50% to 70% of the overall cost; it
is also one of the most time-consuming activities. New
development approaches shall foster the reduction of
effort for Verification and Validation. This result is
achieved with the adoption of a rigorous design
methodology and a suitable overall process. A possible
strategy consists in the adoption of a design process
inspired to the principle of Correctness by
Construction (C-by-C), analysis at early design stage
and provisions for reusability of (functional) tests are
the key ingredients to the attainment of the expected
reduction of effort; a reduced effort for V&V activities
concurs to attaining a shorter development time and
reduced cost.

Mitigate the impact of late requirement definition or
change: The definition of new requirements or their
change may occur during the whole SW lifecycle. The
causes of those situations are typically traced to late
refinement of system design, evolution of the
operational level, to mission-specific concerns like a
late finalization of the system FDIR or of the mission
management, or to software modification required to
compensate for HW problems found during system
integration.

Support for various system integration strategies:
Preliminary software releases are important to allow
early system integration. Software development as well
may be managed with different strategies. The new
approach is required to facilitate those different
strategies and ease the final integration of the
increments or elements.

Simplification and harmonization of FDIR: For future
missions, a simplification and hopefully harmonization
of the Fault Detection, Isolation and Recovery (FDIR)
approach is advocated. This need has to be attacked
both at system and software level. For the former,
system engineers have to rationalize the definition of
the FDIR strategy. For the latter, a simplification and
rationalization of the software provisions for FDIR is
advocated. A valuable strategy would consist in
providing a set of functionalities and design patterns
that cover the essential mechanisms for the software
realization of a FDIR strategy.

Optimize flight maintenance: Flight maintenance may
be required to change the OBSW. Facilitation of the
required operations, as well as a harmonization of the
strategy to perform it will decrease the time and cost of
maintenance. It would be desirable to also minimise the
risk of in-flight maintenance by updating parts of the

software (possibly an entire component) without
having to reboot the CDMU.

Industrial policy support: In general, the development
process should enable multi-team software
development. Industrial policy is very specific to the
ESA environment. It requires some flexibility in the
allocation of software elements to industry, according
to criteria such as prime/non-prime, or geographical
return. Multi-team software development facilitates the
subcontracting to non-prime while keeping integration
controllable, and facilitates the application of the
geographical return policy.

Role of software suppliers: A new harmonized
approach to software development should promote the
increase of competence of supplier. The approach
inherently foster supplier competition: different
suppliers may develop the same component and
compete on quality, extension features, performance,
cost and, to a lesser extent, schedule. Interestingly, for
what concerns suppliers, the approach will enable to
provide software to every software prime, without the
need to adapt all the software to the specific
development policies of each single prime.

Dissemination activities: The benefits that are earned
with the adoption of an agreed development approach
may be increased with the collaboration of system
engineers. The definition of future systems (by system
engineers) can be improved by exposing them to the
core principles of the approach. If they specify out of
the domain of reuse, the cost will certainly increase.

Future needs: Several needs can be foreseen for future
missions. In particular the growing software
complexity is one of the origins of those needs. These
needs should be taken into account and should be
evaluated on their impact on the software reference
architecture. Examples of future needs are the
integration of functions of different criticality level, of
different security level, use of Time and Space
Partitioning (TSP), support to the multi-core
processors, contextual verification of safety properties.

2.4 High level requirements

The user needs have been then translated into a set of
high level requirements, in particular about software
reuse, separation of concerns, reuse of V&V tests,
HW/SW independence, component-based approach,
software observability, software analyzability, property
preservation, integration of software building blocks,
support for variability factors, late incorporation of
modification in the software, provisions of mechanisms
for FDIR, and software update at run time.

The requirements have been prioritized in order to
guide the planning of the work. They have been traced
to the user needs.

2.5 The software reference architecture

The software reference architecture is made of two
main parts:

 An software architectural concept addressing the
pure software architectural related issues,

 The functional aspects represented by a set of
building blocks and the corresponding interface
definitions, expressing the functions derived from
the analysis of the functional chains of the core on-
board software domain.

Reference
architecture

=
Software
architectural
concepts

+
Building
blocks &
Interfaces

3. THE SOFTWARE ARCHITECTURAL
CONCEPT

3.1 Component model

The software architectural concept is based on a
component based software engineering (CBSE)
approach [1]. The approach defines a component model
that features three software entities, the component
(which is the design entity), the container and the
connector (two entities used in the implementation
which do not appear explicitly in the design space).
The approach permits the creation of software as a set
of interconnected components. The set of components
represents the functional architecture of the software.
An underlying execution platform provides services to
components, containers and connectors. Finally, all the
software is deployed on a physical architecture
(computational units, equipments, and network
interconnections between them).

Components,
Containers, Connectors

Physical architecture

Component
A

Component
A

Container AContainer A

Component
B

Component
B

Container BContainer B

Connector ABConnector AB

Execution platformExecution platform

Figure 2: Software architectural concept

The success of a development methodology aimed to
software reuse in the space domain (considering the
specific constraints of embedded systems) lies on: (i)
the adoption of a rigorous separation of concerns in
particular between the functional and non-functional
dimensions; (ii) the verification of properties of
components and of component assemblies.

Separation of concerns is enforced in a CBSE by a
clear and careful allocation of concerns to the three
distinct software entities of the approach (the
component, the container and the connector).
Additionally the design space should be equipped with
a multiple view that enforce separation of concerns and
permit to the various design actors to concentrate only
on their concern of pertinence.

Components are decorated with various properties. The
second key factor of CBSE is the verification of
properties, in particular (a) composability, which is
ensured when a property stipulated on individual
components hold upon component composition; and
(b) compositionality, which is the ability to determine a
property of a component assembly or in general of the
whole software by the only use of properties of their
individual components.

The component model defines formally all those
functional concepts as well as the rules governing their
usage. It may be noticed that ASSERT
(http://www.assert-project.net/), even if focusing on
other aspects, features a kind of component model.

3.2 Computational model

Likewise, the computational model defines formally
computational entities as well as the rules governing
their usage. Using a computational model is required
by the Space software engineering standard (ECSS-E-
ST-40C). A dynamic software architecture is described
according to an analysable computational model, i.e.
from the description a schedulability analysis can be
conducted.

3.3 Execution platform

The execution platform is the part of the software
architecture providing all necessary means for the
implementation of a component and computational
model. The services can be subdivided into four
different parts: (i) services for containers (to enforce or
monitor non-functional properties), (ii) services for
connectors (e.g. for the implementation of
communication means), (iii) services for components
(typically technical services like access to the on-board
time, or storage services) and (iv) services to
implement so-called “abstract components” (e.g. PUS
monitoring, OBCPs, HW representation).

Note: Reference architecture and Time and Space
Partitioning (TSP).

The notion of reference architecture includes (i) a
computational model and (ii) a conformant execution
platform that provides services for containers, in
particular scheduling services. It is therefore possible
to select Time and Space Partitioning as a scheduling

service, with a cyclic or time triggered computational
model.

This choice only impacts on the services for
connectors, as the communication services must also
include an inter partition communication channel.

4. THE FUNCTIONAL ASPECTS

4.1 Introduction

The building blocks and interfaces, which are the
functional aspects of the reference architecture, are the
result of the mapping of functional chains of the
spacecraft onto the software architectural concept,
through the allocation of functions to components or
execution platform services.

Building
blocks &
Interfaces

=
mapping
of

Functional
chains &
Variability
factors

onto
Software
architectural
concepts

4.2 Functional chains

Functional chains are a consistent and well enclosed set
of functions that are needed to use and operate the
spacecraft and typically consist of a set of hardware
and software that together perform an end-to-end
system level function. Functional chains should be
integrated and validated (as far as possible) in
separation.

An example for a functional chain is the thermal
control which uses the following entities: thermistors
(sensors), I/O interface, control algorithm, heaters
(actuators), Telecomand reception, Telemetry delivery.
Other functional chains are the AOCS; Data
management and control (TM/TC); Mission
Management, Payload management, etc.

Attitude control

Thermal regulation

Payload management

…

Mission mgmt

Ground

Star tracker,
Gyro, Sun sensor

Reaction wheels,
propulsion

Payload

…

Mode mgmt Algorithm

Monitoring …

Figure 3: Example of functional chains

4.3 Domain engineering

The reference architecture is made to be reusable. The
architectural concept gives the mechanisms to
implement reuse. However, the functional aspects must

also be reusable. To achieve this goal, the domain of
reuse of the functional chains must be defined. This is
usually done using the concept of domain engineering.
This process consists of two main steps:

 Domain analysis that identifies the scope of the
domain (the functional chains to be covered), its
commonalities and its variability factors.

 Domain design that maps the functions identified
in the previous steps on to the software
architectural concept by allocation of functions to
components or execution platform services.

4.4 Variability factors

For the development of a reference architecture and the
identification of the elements which can be re-used in
the frame of this architecture, an analysis of the
commonalities and variability factors within the
domain is essential. The domain analysis gathers all
this information synthesized in the so-called feature
model. Various aspects of the domain can be taken into
account, e.g. functional chains (top-down approach),
physical world (bottom-up approach), past, current and
future architectures (software as well as hardware),
experiences from other domains (e.g. automotive).

The COrDeT study identified six variability factors:

Mission

System operational concept

Network

Processor module

Avionics

Monitoring & Control I/F

Figure 4: Variability factors

The variability factors are dependent on each others but
solely in one direction (from mission to processor
module). Indeed the assets implementing the mission
variability will rely on assets implementing the system
operational concept, avionics, network and processor
module variability factors.

Setting the variability within the domain of reuse
obviously impair the definition of any system out of the
domain of reuse. It must be understood that a proper
definition of the domain is essential, as it will trade the
freedom of specification of system engineers, for the
efficiency of the system implementation. The definition
of the functional chains for the reference architecture
needs therefore strong support of system, operation,
avionics and control experts.

The mapping of the functional chains on the software
architectural concept allocates functions to components

and execution platform services. It must be noted that
those components or execution platform services must
not cross the boundaries of the identified variability
factors in order to improve re-use. The result is
subsequently expressed as a set of building blocks
(either application components or execution platform
elements) and their interfaces.

4.5 Interfaces and their definition

General and reusable interfaces must be carefully
designed and group a limited number of operations
which have a strong functional cohesion, according to
the Interface Segregation Principle:

“Building blocks shall not be forced to depend on
operations that they do not use.”

This principle deals with the disadvantages of defining
large interfaces. Large interfaces are not cohesive.
Cohesion is a measure of how strongly related and
focused the responsibilities are. In other words the
interfaces of building blocks should be broken into fine
grained groups of functions that have highly related
responsibilities for specific clients or service. This is
also in relation with the cohesion of building blocks,
which must be highly cohesive. A building block with
highly related responsibilities that does a little amount
of work is considered highly cohesive.

5. THE REFERENCE ON-BOARD SOFTWARE
ARCHITECTURE FOR SPACECRAFT

A mapping of the functional chains onto the elements
of the software architectural concepts results in the
identification of building blocks as follows:

Execution framework

Software bus

Libraries:
mathematical,

etc.
SOIS Subnetwork layer (1553, CAN, SpW)

(including HDSW) BSP

Container
services

Connector
services

PUS specific
Component

services
Abstract component

services

PUS and
MTL

services

OBCP
interpreter

Avionics
Equipment

virtual
devices

=SOIS DVS

PUS
monitoring

Application BB (mission dependent)

Plan/ Autonomy
Framework

System mode
mgmt

Central FDIR

AOCS

P/L Manager

Thermal

Power

OBT Mgmt

Satellite Conf
and Eqpt

Mgmt

SSMM Mgmt

ABB supported
by abstract
components :

To be confirmed
if ABB:

RTOS

Context
Mgmt

On-board
time

=SOIS TAS

Communication
services

addressing
physical

distribution across
nodes

= SOIS MTS

Figure 5: The current status of the software reference
architecture

6. OPEN POINTS AND WAY FORWARD

6.1 Hierarchical components

The adoption of hierarchical decomposition of
components can be an effective means to master the
complexity of software design as opposed to attaining
containment relationships between components. A
component could be decomposed to include a set of
child components with delegation and subsumption
relationships between the interfaces of the parent
component and those of the child components.

However, in contrast to other approaches, the various
non-functional dimensions applicable to the space
domain complicate the picture.

The solution currently preferred is a form of “grey
box” containment, in which the parent component
reveals only information that is necessary to perform
the required forms of analysis (schedulability analysis,
stack analysis, etc..)

The solution to this problem shall in fact preserve the
verification of composable and compositional
properties, which is one of the foremost requirements
placed on the component model and a cornerstone of
the advocated approach.

6.2 Error management

The Fault Detection, Isolation and Recovery (FDIR) is
a major function of the spacecraft platform system and
software. It has a high complexity because it links
together hardware behaviour, hardware failure,
hardware reconfiguration, software, software
monitoring, software reconfiguration actions such as
mode changes, and last but not least, time, response
time and latencies. Getting it to work is a difficult task.
Its complexity could be reduced through a proper
architectural design with separation of concerns. But
this is a task that goes above the software architects,
and must be tackled as well by various kinds of system
engineers (avionics, control, dependability, etc).

It is considered up to now that FDIR can be subject to a
reference architecture, where the software implements
elementary actions which are highly parameterized and
data driven. The setting of the parameters at system
level allows configuring the FDIR, while keeping the
software architecture relatively compliant to the
separation of concerns goal.

6.3 Application or execution platform?

Mapping some functions on the architecture sometimes
results in the multiplication of the same software
mechanism into the application software. As a matter
of optimization, it is sometimes useful to optimize the
architecture by moving this common mechanism into

the execution platform, although it belongs by nature to
the application.

One example is the monitoring of the house keeping
parameters, which allows determining the health status
of the spacecraft. This monitoring is performed by all
the functional chains on their own parameters.
Duplicating this function as the same component in all
the application building blocks would be heavy.
Instead, it becomes an “abstract component”. The
monitoring common mechanism can be moved into the
execution platform, as a “service for abstract
components”.

A more difficult case concerns the components that
should have access to nearly all the existing provided
interface. This would increase the complexity the
architecture a lot and goes against the separation of
concerns. An example is the so called OBCP (On
Board Control Procedure), a sort of script which is
send to the spacecraft during operation, interpreted on
board, and which can activate many software
resources. There is today no satisfactory solution for
this sort of component.

6.4 Towards a new validation process?

Verification and validation activities are a major cost
and schedule driver for on-board SW development, so
a reference architecture aiming at reuse must take them
into account.

The current software architecture mixes functional and
non functional aspects. Therefore the preservation of
assumptions can not be demonstrated.

Demonstrating the preservation of the assumption is
much more difficult than rerunning all the tests (TSP or
not). A new reference architecture that separates
functions (e.g. a component model), that support the
formalization of the assumptions and their verification
in the implementation, should inverse the trade-off, and
should allow a maximum reuse of the tests. For
example, configuration parameters of the building
blocks must also to configure the test suite. The
specification of a building block should include
requirements on the reuse of its test suite.

As a consequence, the traditional validation tests
should be split into sub-steps, some of them being
reusable as is.

6.5 Method and tools

The software architectural concept defined to realize
the reference architecture strongly relies on the
adoption of domain specific languages, methods and
supporting tools.

Product lines engineering, model driven engineering
and component orientation require specific modelling

languages, automation or semi-automation of many
steps and generation capabilities in support of property
preservation, separation of concerns and variability.

In addition mapping of functional chains and
variability factors to the software architectural concept
are system level concerns that need to be further
developed in the methodological frame

The overall approach requires a high degree of control
over support tools to be adopted in order to obtain
proper customizations and maintainability over time.

Control of tools can be obtained either through a
collaboration among the space community and
commercial tool vendors or through the adoption of
open source tools.

However the today’s limited number of commercial
model driven tool vendors (nearly a monopoly),
considering also the high number of tools that have
been discontinued recently, the high costs to develop
and maintain domain specific tools and the small
dimension of the space market are all driving factors
the shall be considered in the space community and
lead to the adoption and to the investment on open
source tools.

7. CONCLUSION

The elaboration of a reference on-board software
architecture is ambitious. Key elements are essential to
the success of the approach:
 an appropriate domain engineering to define the

perimeter of reuse of the software
 identification of the variability factors within that

domain
 separation of concerns, between functional and

non functional, between application and execution
platform

 adaptation of the engineering process, in particular
for Validation, and elaboration of a clear reuse
process allowing the identification of a minimum
delta-validation.

The success of the approach will be measured by the
level of reuse of the components. The operating system
RTEMS is currently the first eligible space software
building block. The expectation is that the space
software industry is able to transfer its development
effort from non sophisticated repetitive developments
such as data handling, basic communication, control,
thermal and power frameworks, towards sophisticated,
value added, expert functionalities such as advance
control laws, autonomy, intelligent fault detection
isolation and recovery, on-board sensor fusion, which
are essential for future missions such as global earth
observation, deep space science or exploration.

8. ACKNOWLEDGEMENT

The authors acknowledge the contribution of their
colleagues to this work, in particular the Savoir-Faire
working group [P.Arberet (CNES), J.Li (SSC),
M.Ferrugato (SSF), P.Hougaard (Terma), A.Rossignol
(Astrium), S.Mazzini (Intecs), S.Fowell (SciSys),
S.Montenegro (DLR), A-I.Rodriguez (GMV), G.Garcia
(Thales Alenia Space)] and M.Panunzio (University of
Padua).

ESA has recently achieved parallel activities [2], [3],
[4], aimed at preparing the grounds for improving the
onboard software reuse in a systematic manner:

− Component Oriented Development Techniques
(COrDeT) – two parallel TRP activities each lead by
one prime (Astrium and Thales Alenia Space)

− Domain Engineering (Domeng) – GSTP activity lead
by GMV.

These contracts involve relevant stakeholders in the
prime and software supplier sectors: Astrium Toulouse,
Thales-Alenia Space Cannes, SciSys, GMV, Intecs, as
well as academia and SMEs: the University of Padua,
P&P Software and SoftWcare. The objectives of these
projects were to:

− Define the knowledge domain relevant to spacecraft
(satellites and space exploration systems)

− Define generic architectures (design models) for the
future implementation of the components (building
blocks)

− Propose a BB and interface standardisation scheme

− Identify suitable technologies to support the domain
engineering.

9. REFERENCES

[1] M.Panunzio and T.Vardanega: "On component-
based development methods and high integrity
real-time systems", 15th IEEE International
Conference on Embedded and Real-Time
Computing Systems and Applications, Beijing,
China, August 24th-26th, 2009.

[2] A.-I. Rodríguez, P. Rodríguez, I.-L. Vera & E.
Alaña, “Modelling the Space Domain: Domain
Engineering for Avionics/Embedded Systems”
DASIA, Palma de Majorca, 2008

[3] L. Planche, “Component Oriented Development
Techniques: Assessing a Domain Engineering
Approach to Space Software Engineering”,
DASIA, Palma de Majorca, 2008

[4] P. Rodríguez-Dapena, “CORDETS (Component
Oriented Development Techniques) and
DOMENG (Domain Engineering)” DASIA,
Palma de Majorca, 2008

[5] Savoir-Faire working group, “Savoir-Faire On-
board software reference architecture”, TEC-
SWE/09-289/AJ

